‘RepliBench’ เครื่องมือใหม่จากสหราชอาณาจักร ทดสอบทักษะ AI ผลิตซ้ำโมเดลตัวเอง

Asa Cooper Stickland นักวิจัยด้านความปลอดภัย AI ได้จุดประเด็นร้อนเรื่องนี้ขึ้นมาใหม่ผ่านโพสต์บนแพลตฟอร์ม X เมื่อวันพุธที่ผ่านมา เขาตั้งคำถามว่า AI ขั้นสูงจะเรียนรู้ที่จะผลิตซ้ำโมเดลตนเองได้หรือไม่ พร้อมอ้างอิงงานวิจัยล่าสุดจากสถาบันความปลอดภัย AI ของสหราชอาณาจักร (UK AI Safety Institute หรือ AISI) ที่ได้พัฒนาเครื่องมือชื่อ ‘RepliBench’ ขึ้นมาทดสอบความสามารถนี้โดยเฉพาะ เครื่องมือนี้จะวัดว่า AI ชั้นนำสามารถจำลองตัวเองขึ้นมาใหม่ได้โดยอัตโนมัติโดยไม่ต้องพึ่งพามนุษย์หรือไม่ ซึ่ง Stickland สรุปเบื้องต้นว่า AI ปัจจุบัน “พัฒนาไปเร็วมาก” ในด้านนี้ แต่ยังขาดความสามารถสำคัญอีกเพียงไม่กี่ด้านเท่านั้น

RepliBench ทดสอบอะไรบ้าง? รายงานวิจัยของ AISI ระบุว่านี่คือชุดการประเมินที่นำ AI ชั้นนำหลายตัว เช่น โมเดลจาก Anthropic (Claude 3.5 และ 3.7 Sonnet), OpenAI (GPT-4o), Google (Gemini 1.5 Pro), Meta (Llama 3) และอื่นๆ มาทดสอบความสามารถในการทำสิ่งที่จำเป็นต่อการผลิตซ้ำโมเดลตัวเอง ซึ่งรวมถึงงานที่ท้าทายอย่างการเข้าถึงทรัพยากรคลาวด์คอมพิวติ้ง การหาแหล่งเงินทุนหรือวิธีชำระเงิน การดึงโค้ดหรือ ‘weights’ ของตัวเองออกมา การติดตั้งสำเนาที่ทำงานได้บนเซิร์ฟเวอร์ใหม่ และการทำให้สำเนาเหล่านั้นทำงานอยู่ได้อย่างต่อเนื่อง

Replibench คืออะไร ?

RepliBench คือชุดเครื่องมือทดสอบ (benchmark suite) ที่พัฒนาโดยสถาบันความปลอดภัย AI แห่งสหราชอาณาจักร (UK AI Safety Institute - AISI) มีจุดประสงค์หลักเพื่อวัดผลและติดตามความสามารถของระบบ AI ขั้นสูง (Frontier AI) และโมเดลภาษาขนาดใหญ่ (LLM) ในการผลิตซ้ำโมเดลตนเอง (Autonomous Replication) ซึ่งก็คือการที่ AI สร้างและแพร่กระจายสำเนาตัวเองไปยังระบบอื่นได้โดยอัตโนมัติ การทดสอบนี้สำคัญอย่างยิ่งต่อการประเมินความเสี่ยงและเสริมสร้างความปลอดภัย AI เพื่อป้องกันความเป็นไปได้ที่ AI จะพัฒนาความสามารถนี้จนกลายเป็นภัยคุกคามได้

ผลการทดสอบ: AI ทำได้ถึงไหนแล้ว?

ผลลัพธ์เบื้องต้นชี้ว่า AI ปัจจุบันยังไม่น่าก่อภัยคุกคามจากการจำลองตัวเองอย่างไร้การควบคุมได้ในทันที อย่างไรก็ดี โมเดลเหล่านี้แสดงทักษะที่น่าทึ่งในหลายขั้นตอนย่อย AISI พบว่า AI ชั้นนำส่วนใหญ่สามารถจัดการเรื่องการสมัครใช้บริการคลาวด์ ตั้งค่าคอมพิวติ้ง เขียนโค้ดพื้นฐานสำหรับแพร่กระจายตัวเอง หรือแม้แต่ดึง model weights ของตัวเองออกมาได้ หากระบบความปลอดภัยไม่ซับซ้อนนัก แต่ก็ยังมีอุปสรรคสำคัญอยู่ 

โดยเฉพาะความท้าทายในโลกจริงที่ซับซ้อนกว่า เช่น การผ่านขั้นตอนยืนยันตัวตน ‘Know Your Customer’ (KYC) ที่เข้มงวดสำหรับธุรกรรมทางการเงิน หรือการสร้างระบบให้ทำงานได้อย่างต่อเนื่องและทนทานเมื่อเจอปัญหาอย่างระบบล่มหรือถูกปิดได้ รายงานยังระบุเพิ่มเติมว่าโมเดลอย่าง Claude 3.7 Sonnet แม้จะทำได้ดีในภาพรวม ก็ยังติดขัดกับงานทดสอบในเวอร์ชันที่ยากขึ้นอยู่ดี

ทำไมต้องทดสอบ? ความกังวลด้านความปลอดภัย AI

การตรวจสอบความสามารถที่อาจเป็นอันตรายเหล่านี้เป็นภารกิจสำคัญของ AISI เพราะมีความกังวลหลักเรื่องการควบคุม AI หาก AI สามารถผลิตซ้ำโมเดลตนเองไปยังระบบที่ตรวจสอบไม่ได้ ก็อาจหลุดรอดจากกรอบควบคุมและมาตรการความปลอดภัยที่นักพัฒนาวางไว้ นักวิจัยกังวลว่าสิ่งนี้อาจเพิ่มความเสี่ยงปลายน้ำ เช่น การถูกใช้ในทางที่ผิดเพื่อโจมตีทางไซเบอร์, การเผยแพร่ข้อมูลเท็จเป็นวงกว้าง หรือการที่ AI ทำตามเป้าหมายที่ผิดพลาดไปโดยไม่มีมนุษย์ควบคุม AISI ในฐานะหน่วยงานรัฐแห่งแรกของโลกที่เน้นเรื่องความปลอดภัย AI ขั้นสูง จึงมีเป้าหมายเพื่อทำความเข้าใจและเตรียมพร้อมรับมือความก้าวหน้าอย่างรวดเร็วของ AI เพื่อลดความเสี่ยงจากเหตุการณ์ที่ไม่คาดคิด

RepliBench จึงเป็นเครื่องมือสำคัญยิ่งสำหรับติดตามความสามารถเหล่านี้ แม้ AI วันนี้ยังจำลองตัวเองไม่ได้สมบูรณ์ แต่พัฒนาการอันรวดเร็วก็ตอกย้ำว่าเราจำเป็นต้องเร่งวิจัยด้านความปลอดภัยและทดสอบอย่างเข้มข้นต่อไป เพื่อให้มั่นใจว่าการพัฒนา AI จะดำเนินไปอย่างมีความรับผิดชอบ ควบคู่ไปกับการจัดการความเสี่ยงอย่างทันท่วงทีา

อ้างอิง: AISI , X ของ Asa Coop Stick 

ลงทะเบียนเข้าสู่ระบบ เพื่ออ่านบทความฟรีไม่จำกัด

No comment

RELATED ARTICLE

Responsive image

Microsoft ชี้ทักษะ "บริหาร AI Agent" คือตั๋วรอดสู่ยุค Frontier Firm ที่ AI คือเพื่อนร่วมงาน

โลกการทำงานกำลังเปลี่ยนไปอย่างรวดเร็วด้วยพลังของปัญญาประดิษฐ์ (AI) ที่ไม่ได้เป็นแค่เครื่องมือ แต่กำลังก้าวสู่การเป็น "ผู้ช่วยอัจฉริยะ" และ "เพื่อนร่วมงานดิจิทัล" รายงานล่าสุด Work ...

Responsive image

รู้จัก Bettr และ Embedded Lending เปลี่ยนการเข้าถึงเงินทุนเป็นจุดแข็งธุรกิจคุณ และเพิ่มโอกาสแก่ MSMEs

MSMEs ไทยกว่า 3.2 ล้านรายเผชิญปัญหาเงินทุน ขัดขวางการเติบโตของธุรกิจ รู้จัก Bettr และ Embedded Lending นวัตกรรมการเงินที่ช่วยปลดล็อกทางออกให้ธุรกิจเข้าถึงแหล่งทุนใหม่ได้ง่ายขึ้น...

Responsive image

รู้จัก Sahabat AI สัญชาติอินโดฯ น้องใหม่จากค่าย GoTo

ลองนึกภาพ AI ที่ไม่ได้แค่พูดภาษาอังกฤษ แต่ยังเข้าใจภาษา วัฒนธรรม และความเป็นอยู่ของคนอินโดนีเซีย นี่คือสิ่งที่ GoTo บริษัทเทคโนโลยีใหญ่จากอินโดนีเซียกำลังพัฒนาในชื่อ Sahabat - AI ท...